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The Calculution of Bond Orders, Resonance Energies, and Orbital 
Energies by a Simple Perturbation Method. 

By M. J. S. DEWAR and R. PETTIT. 
[Reprint Order No. 4725.1 

By using the perimeter model as a basis and by considering the intro- 
duction of cross links as a perturbation, an estimate of the resonance energies, 
orbital energies, and bond orders of polycyclic aromatic hydrocarbons can 
be obtained in a much simpler manner than by the usual L.C.A.O. procedure. 
A linear correspondence exists for the values of the resonance energies pre- 
dicted by the two methods; there is also a close agreement for the orbital- 
energy estimates. Some differences do occur between the two methods in 
the calculated bond orders and predicted bond lengths : a comparison with 
the experimental values for naphthalene and anthracene shows the L.C.A.O. 
method and the simpler new method to be about equal in the accuracy of their 
predictions. 

THE molecular orbital method has been successfully used to account for the physical and 
chemical behaviour of conjugated organic molecules. Its basic conception is that the 
electrons of a conjugated system occupy molecular orbitals covering the entire extent of 
the conjugation, and in the L.C.A.O. M.O. approach the wave functions of these orbitals 
can be written as linear combinations of the wave functions of the various atomic orbitals 
involved in the conjugated system. Thus the electronic energy levels in the molecule 
can be determined, as well as resonance energies and bond orders. Unfortunately, in 
many cases, and in common with alternative methods, the straightforward L.C.A.O. M.O. 
treatment loses much of its appeal by virtue of the tedious calculations involved. However, 
it is found that, as in other branches of quantum mechanics, coiisiderable simplification 
can often be introduced by use of perturbation methods. Largely because of the inclusion 
of perturbation methods into the M.O. theory and of the resulting simplifications a general 
theory has been devised which can now serve as a basis for the theoretical study of many 
organic compounds (Dewar, J .  Amer. Chem. SOC., 1952, 74, 3341, 3345, 3350, 3353, 3355, 
3357 , and references therein ; Dewar and Pettit, following paper). 

It is also encouraging that in the process of simplifying the usual L.C.A.O. treatment 
by the inclusion of perturbation methods the validity of the results is not necessarily 
decreased. This fact is amply demonstrated in the calculations of the frequency of the 
first absorption bands of complex aromatic hydrocarbons where the predicted values 
given by perturbation methods are much more easily obtained and, indeed, are in far 
better agreement with experiment , than those obtained by the straightforward M.O. 
method (Dewar, J., 1952,3532). 

The present paper describes how the inclusion of perturbation methods assists in the 
M.O. evaluation of orbital energies, resonance energies, and bond orders of polycyclic 
aromatic hydrocarbons ; the usual M.O. calculations of these quantities are extremely 
tedious in such compounds, especially those having more than three fused rings and having 
no symmetry properties. In  principle the present treatment considers a polycyclic 
aromatic hydrocarbon as formed by the introduction of certain cross-links into a completely 
conjugated cyclic polyene, e.g. , naphthalene is considered as formed from cyclodecapent aene 
by means of a link between C(l) and The orbital energies and bond orders of a cyclic 
polyene can be written down on sight and it only remains to  find what effects the perturb- 
ations, i.e., the introduction of the various internal cross-links, have on these values. 
Perimeter models have already been used by Platt (J .  Chem. Phys., 1949, 17, 484) in 
connection with the spectra of aromatic hydrocarbons. 

METHOD 
Orbital Ewrgies and Resonance E.izergies.-The electrons of a cyclic polyene occupy orbitals 

The co- which are all doubly-degenerate, except for the lowest, which is non-degenerate. 
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efficients of the wave functions of the atomic orbitals in each molecular orbital have the values 
sin nxx/k and cos nxx/k.  

IIp (sin) = L 4  sin (nxx/k) . IGZ 7 

The wave functions of the molecular orbitals are given by : 

X 
* (1) 

2 i and Y (cos) = X A  cos (nxx/K) . t jx  ' . * * ' ' 

where t,hz is the 2p A.O. of atom number x .  
The energy of each of these molecular orbitals is given by 

. . . . . . . . .  E = - 2p cos 2nx/k (2 )  
Where n is the quantum number of the orbital, k is half the total number of atoms, and A is a 
normaking factor having a value of l / Z / k  when n # 0 and l/dz when n = 0. 

It will be seen that the numbering of the atoms in the polyene is purely arbitrary and to 
simplify the calculations it is desirable to introduce a phase factor E such that the atomic orbital 
coefficients are given by the expressions : 

A sin [ (nxxlk)  + e] and A cos [ (nxx/k)  + E 

No generality is lost because of this inclusion. 
Now consider the formation of a bond between two non-adjacent atoms Y, s of the polyene 

as being the perturbation. The basic zero-order wave functions for the first-order perturbation 
for a doubly degenerate level are then given by : 

@ = C,Y (sin) + C,Y (cos) 
7L f l  

= C ,  X A sin [(nw/R) + e] + C, Z A cos [ ( m x / K )  + E ]  . . .  (3 )  
x = l  x = l  

The first-order perturbation energies are given by the standard secular equation 

When the non-diagonal terms of the determinant are made to vanish the roots of the secular 
equation (4) become simply Hfl and Hi%. 

The simplest way to solve equation (4), and simultaneously to determine the phase angle E 

is to choose e in such a way that the off-diagonal elements, H:, in the determinant vanish. 
The roots of the secular equation then become Hf, and HL, and the coefficients of the atomic 
orbitals in the perturbed molecular orbitals become : 

A sin [ (nxx/k)  + e] and A cos [nxxlk) + e] 

[since if Hi2 vanishes, either C, or C, in equation (3) vanishes]. Equating H& to zero and 
considering the perturbation term, P, of the Hamiltonian to be the introduction of a cross- 
link between atoms I and s, we have : 

. . . . . . .  Hi2 JY (sin) PY (COS) d7 = 0 (5) 
11 

i . e .  A sin [(nxxlk) + e] C A cos [ (nxxl /k)  + ~ 3 1 4 ~ .  PIG2, d7 = 0 . . (6) 
X I =  1 

* (7) 
Now / @.  +hxIdT = - p when x = Y ,  x1 = s 

% l = Y ,  x = s  
= 0 otherwise 

. . . . .  

Therefore, from (6), we have : 
Z{A sin [ (nmlk)  + &]A cos [(nxs/R) + E] + A sin [(nxs/k) + e] cos [nxv/k + E]} = 0 . (8)  
e 

where the summation is taken over all the cross-links formed in the molecule. 
Now, from (8) we see that 

X sin { [ % X ( I  + s)/k + 2&]) = 0 
e 

z.e., 2 sin [ m ( Y  + s)/k] cos 2a + X cos [(nx(r + s)/k] . sin 2~ = 0 
e c 

C S h  [92X(I  + S ) / k ]  

Therefore, tan 2s = - (9) Zcos[nx(r + s ) / k ]  * * * * * * 
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Equation (9) allows a determination of the phase factor and thereby allows simple expressions 
for the perturbation energies. In practice it is found that the phase factor need be calculated 
only for molecules having no plane of symmetry; in the other cases i t  can be made equal to 
zero by adopting the correct numbering, and this in turn can be found by inspection since the 
plane of symmetry must be a nodal plane for one member of each pair of degenerate eigen- 
functions. The perturbation energies are then given by the equations : 

and 
From (10) : 

El (sin) = H:, = SY (sin) . P . Y (sin) . d.t . . . . - (10) 
El (COS) = H12 = J Y P  (COS) . P . Y (COS) . d.r . . . . . (11) 

El = l z g  5 A2 . sin (rtxx/k) . sin ( laxd /h )  . . P . . d7 
-1 d3.1 

where the phase factor has been embodied in the values x and xl. 
equations (7) are substituted for the integral equation (10) becomes : 

When the values given in 

El (sin) = - A2P([sin (nxrlk) . sin (nns/k)] + [sin (nxs/k) . sin(nxv/k)]) 
= - A*P{cos [nx(v - s ) / k ]  - cos [m(r + s)/k]) . . . . . (12) 

El (COS) = - A'~{cos [ r t ~ ( ~  - s)/K] + cos [nX(r + s ) / k ] )  . . . (13) 

El sin (cos) = - CA2P {cos [ m ( r  - s ) / k ]  (F) cos [ m ( r  + s ) / k ]  . . (14) 

Similarly equation (1 1) simplifies to 

When more than one cross-link is being formed the values are given by 

cross links 
since first-order perturbations are additive. 

cyclic polyene when cross-links are found to give the polycyclic compound. 

naphthalene. 

Equations (14) now allow the determination of the change in energy of the orbitals of the 

The Figure illustrates how the method is used in the determination of the energy levels of 
The parent cyclic polyene is shown on the left ; the cross-link is to be introduced 

Enc jgy /cLels of naphihulenc, overlap 

Energy levels 
of polpene 

- IPClS 
sin - v 
cos - ________t 

- 1.61s 
sin - 
cos - 

- 2.00 
cos - - 

being ntglected.  

Pert 11 rbat ion 
Energy lcvels of naphthalcne 

L.C.A 0. 
method ine t liod 

- 0.618 - 0.818 
- 1.018 - 1.000 

- 1.218 - 1.304 

- 1.618 - 1.618 

- 2-200 - 2.301 

between atoms 5 and 10, and the numbering of the ring is such as to allow the phase factor to 
vanish. The orbital energies (overlap being neglected) of the polyene are given in the first 
column and their new values, after the introduction of the cross-link, are shown in the second 
column. The third column gives the energy levels calculated by the usual L.C.A.O. procedure. 

Similar calculations have been performed on sixteen polycyclic aromatic hydrocarbons, 
with the results given in Table 1, together with the corresponding values calculated by the 
usual L.C.A.O. method. Also given are the resonance energies and the four lowest electronic 
transition energies involved in light adsorption, together with a comparison of these values 
(both readily obtained from a knowledge of the orbital energies) with those obtained by the 
L.C.A.O. method. 

Bond Orders.-By considering a polycyclic hydrocarbon as formed from a completely 
conjugated cyclic polyene by the introduction of cross-links, it is also possible to obtain a value 
of the bond orders of the polycyclic hydrocarbons in a simple manner. We make use of an 
expression, first introduced by Coulson and Longuet-Higgins (Proc. Roy. Soc., 1947, A , 191, 
39) and applicable to conjugated systems, termed the bond-bond polarizability. This value 
is defined * by : 

* The negative sign in equation (15) arises because we have retained the original convention for the 
signs of energies. 
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TABLE 1. Resonance energies, transition energies, and occupied molecular orbital energies 

Except for the resonance energies, where it has been neglected, a value of 0.25 has been taken for 
the overlap integral. The values are all in terms of y, the appropriate unit when overlap is included. 
The L.C.A.O. values have been taken from data given by Pullman and Pullman, " Les Theories Elec- 
troniques de la Chimie Organique," Masson, Paris, 1952. 

of polycyclic hydrocarbons. 

Resonance energy Electronic transitions Orbital energies 
Perturbation Perturbation Perturbat ion 

Compound 
Naphthalene . . . . . . . . . . . . . . . . . . . . . . . . 

Anthracene . . . . . . . . . . . . . . . . . . . . . . . . 

Phenanthrene . . . . . . . . . . . . . . . . . . . . . 

Naphthacene . . . . . . . . . . . . . . . . . . . . . . . . 

3 : 4-Benzophenanthrene . . . . . . 

Triphen ylene . . . . . . . . . . . . . . . . . . . . . 

Chrysene . . . . . . . . . . . . . . . . . . . . . . . . . . . 

method 
3.344 

4.622 

4-618 

5.843 

5.842 

5-904 

5-840 

L.C.A.O. 
3.683 

5.314 

5-448 

6.932 

7.187 

7.275 

7.190 

method 
1-266 
1-542 
1.902 
2.178 

0.847 
1.202 
1-539 
1.894 

1.314 
1.406 
1-501 
1.593 

0.596 
0.892 
1-077 
1.373 

1.085 
1.230 
1.359 
1.504 

1.233 
1.233 
1.233 
1-233 

1.027 
1-211 
1.375 
1.559 

L.C.A.O. 
1.266 
1.531 
1.869 
2.133 

0.837 
1.262 
1-709 
2.133 

1.239 
1-358 
1.478 
1.597 

0.594 
0-970 
1-240 
1.610 

1.159 
1.230 
1.290 
1-361 

1.409 
1-409 
1.409 
1-409 

1.058 
1.259 
1.448 
1.649 

method 
0.535 
0-81 1 
0-934 
1-155 
1.419 

0.379 
0-734 
0.794 
1.004 
1.075 
1.292 
1-455 

0.552 
0.644 
0.804 
1.016 
1.018 
1-279 
1-455 

0-276 
0.572 
0-776 
0.863 
1.000 
1.035 
1.226 
1-361 
1-474 

0.470 
0.615 
0-800 
0.800 
0-972 
1-064 
1.134 
1-339 
1-474 

0.524 
0.524 
0.690 
0.934 
0.934 
1.091 
1.252 
1.252 
1474 

0.449 
0-633 
0-672 
0-905 
0.923 
1.045 
1-193 
1.353 
1.474 

L.C.A.O. 
0.535 
0.800 
0.983 
1.152 
1.461 

0-375 
0.800 
0-800 
1.045 
1-045 
1.333 
1.506 

0.526 
0-645 
0.889 
0.984 
1.100 
1.311 
1.514 

0.275 
0,651 
0.800 
0.919 
0.975 
1-073 
1.231 
1.417 
1.526 

0.497 
0.568 
0.800 
0.877 
1.045 
1.045 
1-227 
1-392 
1.541 

0.584 
0.584 

0-973 
0.973 
1.008 
1.320 
1-320 
1.551 

0.460 
0.661 
0-718 
0.933 
0.973 
1.112 
1-193 
1.405 
1-538 

0.721 
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TABLE 1. (Continzced.) 

Resonance energy Electronic transition 
Perturbation Perturbation 

Compound method L.C.A.O. method L.C.A.O. 
1 : 2-Benzanthracene ............ 5.840 7.101 1.027 0.916 

1.21 1 1.117 
1-375 1.277 
1.559 1.477 

Pent acene . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.068 8.544 0-433 0.441 
0.676 0.768 
0-782 0.939 
1-025 1.266 

1 : 2-3 : 4-Dibenzanthracene ... 7.124 8.942 0.989 1.014 
1.088 1.176 
1.158 1.312 
1-257 1.475 

1 : 2-7 : 8-Dibenzanthracene ... 7.068 8-879 1.167 0.999 
1.179 1.096 
1.188 1.169 
1.200 1.266 

Picene .............................. 7.072 8-943 1.074 1.020 
1,154 1.156 
1.217 1.266 
1.297 1-401 

Pentaphene . . . . . . . . . . . . . . . . . . . . . . . . 7.072 8.763 1.074 0.885 
1.154 0.952 
1-217 0.993 
1.297 1.060 

etc . 1621 

Orbital energies 
Perturbation 

method L.C.A.O. 
0.449 0-406 
0.633 0.607 
0.672 04300 
0-905 0.903 
0.923 0-994 
1.045 1-084 
1.193 1.220 
1.353 1.409 
1-474 1-533 

0.205 
0.448 
0.732 
0.763 
0.936 
0.943 
1,053 
1.154 
1.311 
1.409 
1.486 

0.434 
0.533 
0.570 
0.769 
1.000 
1-065 
1.073 
1.073 
1.205 
1.350 
1.486 

0.500 
0-512 
0.670 
0.755 
0,860 
0.997 
1.042 
1.069 
1.261 
1.389 
1.486 

0.466 
0.546 
0.607 
0.814 
0.814 
0.970 
1.061 
1.089 
1.283 
1.394 
1.486 

0.466 
0.546 
0.607 
0.814 
0.814 
0,970 
1.061 
1.089 
1.283 
1.394 
1.486 

0.208 
0.535 
0.800 
0-800 
0-935 
0-983 
1.089 
1-152 
1.333 
1.461 
1-537 

0.444 
0-606 
0-660 
0-869 
0.924 
0.991 
1-026 
1.204 
1-320 
1.428 
1-561 

0.438 
0.535 
0.717 
0.800 
0.953 
0.983 
1.097 
1-152 
1-307 
1.461 
1.647 

0.446 
0.581 
0-708 
0.800 
0.924 
1.018 
1.109 
1.123 
1.305 
1.459 
1.552 

0.394 
0.461 
0.800 
0.800 
0.944 
0.975 
1.093 
1.141 
1-333 
1-454 
1-544 



1622 Dewar and Pettit : The Calculation of Bond Orders, 

TABLE 1. (Contimed.) 
Resonance energy Electronic transitions Orbital energies 

Perturbation Perturbation Perturbation 
Compound method L.C.A.O. method L.C.A.O. method L.C.A.O. 

1 : 2-5 : 6-Dibcnzanthracene ... 7.072 s-880 1-074 1.016 0-466 0.443 
1.154 1.157 0-546 0.584 
1.216 1-269 0-607 0.657 
1.297 1.410 0.814 0.844 

0.814 0.913 
0.970 1.045 
1.061 1.045 
1.089 1-173 
1.283 1.301 
1-394 1.463 
1.486 1.547 

Azulene .............................. 2-954 3,364 0.973 0-968 0.428 0.426 
1.266 1.268 0.721 0.726 
1.556 1-566 0.956 1.013 
1-849 1.866 1.171 1.169 

1-419 1.465 

Pentalene ........................... 2.156 2.456 - - 0-444 0-421 
0.745 0.800 
1.045 1.045 
1.440 1.478 

where a#mn is the change in bond order of the bond w m  following a change in the resonance 
integral aptu between atoms t and u ; amr, ans, etc., are the coefficients of the atomic orbitals of 
atoms m, 12, etc., in the rth and sth molecular orbitals respectively; and Y and s refer in turn to 
the bonding and antibonding orbitals and have energy values of E, and .zS respectively. 

In the case of cyclic polyenes, where the energy levels are doubly degenerate, equation (15) 
can be shown to be also valid if the correct zero-order molecular orbitals given in the previous 
section are used as a basis in its derivation. It follows then that the change in bond order of 
the bond between atoms m and n in a cyclic polyene, caused by the introduction of a cross link 
between atoms t and u, is given by : 

This expression can be applied in the present calculations by using the values for the coefficient 
given in equation (1). 

a,, = cos [(mxrlk) + E ] ;  al,, = sin [(mxr/k) + c] 

these being the coefficients in the two distinct molecular orbitals $m (cos) and $m (sin) of cDmmon 
energy Em. 

If the alternate atoms of the cyclic polyene are starred, then, by using the fact that the 
coefficients of the atomic orbitals of starred atoms in the bonding molecular orbitals of alternate 
hydrocarbons are equal in magnitude and sign to the same coefficients in the corresponding 
antibonding orbitals whereas for unstarred atoms the two coefficients are of equal magnitude 
but differ in sign, equation (16) can be readily simplified to the form : 

+ cos sx(n k - "'I sx(m - u) sx(n - t )  sn(m - t )  + cos ~ + cos 
k 

Since each level is degenerate, we have 

k 
1 

a'mn = k2(1 - COS sx/k)  + k 

rx(m - t )  sx(ra - u) Yx(m - 4 cos sx(rc - t )  
Y7r sx r # O s # %  k k k + cos . cos i + 

k2 cos - - cos -) 
( k  k 

(17) 
Y X ( %  - t )  sx(m - u) rx(n - u) sx(m - t )  

k "OS ~ k ' .  + cos k + cos - . cos 
k 

The first square bracket of this expression results from the combinations Y # 0, s = k, and 
r = 0, s # k ; and the second from Y # 0, s # k ; the value of the perturbation for the com- 
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bination Y = 0, s = k vanishes. As before, if more than one cross-link is formed the perturb- 
ations are additive. 

The bond orders of polycyclic hydrocarbons are then found by adding the perturbation 
values given by equation (17) to the bond order of any bond in the unperturbed cyclic polyene ; 
the bonds of the unperturbed polyene all have the same bond order which is given by : 

T } . . . .  (18) 
pmn = 2CA2 cos (xr/k)  where A2 = 1/2k for r = 0 

= l /Kforr#O 

By this method the bond orders of naphthalene, anthracene, phenanthrene, 1 : 2-benz- 
anthracene, and azulene have been estimated, with results given in Table 2 together with those 

Compound 
Naphthalene ............... 

Anthracene .................. 

Phenanthrene ............... 

1 : 2-Benzanthracene ... 

Azulene ..................... 

Bond 
A 
B c 
D 

A 
B c 
D 
E 

A 
B 
C 
D 
E 
F 
G 
H 
I 

A 
B 
C 
D 
E 
F 
G 
H 
I 

J K  
L 
M 
N 
0 
P 

R 
S 
T 
U 

A 
B c 
D 
E 
F 

Q 

TABLE 2. 
Bond order 

Perturbation 
method 
0.732 
0.584 
0.638 
0-574 

0.761 
0-565 
0-578 
0.557 
0-602 

0.674 
0.663 
0-669 
0.669 
0.662 
0-532 
0-773 
0.490 
0.649 

0.719 
0.635 
0.713 
0.637 
0.703 
0.492 
0.800 
0.503 
0.703 
0.572 
0.631 
0.709 
0.636 
0.706 
0.632 
0-560 
0.725 
0.471 
0.680 
0.634 
0.622 

0.648 
0-648 
0.648 
0.648 
0.648 
0-420 

L.C.A.O. 
method 
0-725 
0.555 
0.603 
0-518 

0.738 
0.535 
0.586 
0.485 
0.606 

0-590 
0.702 
0.623 
0.705 
0.575 
0-506 
0.775 
0.461 
0.542 

0.597 
0.695 
0-628 
0.700 
0.581 
0.493 
0.783 
0.494 
0.628 
0.590 
0.542 
0.732 
0-593 
0.731 
0.545 
0.584 
0.646 
0.447 
0.478 
0.500 
0.495 

0.656 
0-596 
0.586 
0.664 
0.639 
0.40 1 

Predicted bond length 
Perturbation 

method 
1.38 
1-41 
1.40 
1-41 

1-37 
1-41 
1.41 
1.41 
1-49 

1-39 
1-39 
1-39 
1-39 
1.39 
1-42 
1-37 
1-43 
1-40 

1-38 
1-40 
1-38 
1.40 
1.38 
1.43 
1.37 
1-42 
1.38 
1.41 
1-40 
1.38 
1-40 
1-38 
1.40 
1.41 
1-38 
1.43 
1-39 
1.40 
1.40 

1.395 
1-395 
1.395 
1.395 
1-395 
1.44 

L.C. A.O. 
method 

1.38 
1.41 
1-40 
1-42 

1-38 
1-42 
1-41 
1.43 
1-40 

1-41 
1.38 
1.40 
1-38 
1-41 
1-42 
1.37 
1.43 
1-42 

1.41 
1.38 
1 -40 
1.38 
1.41 
1-43 
1-37 
1-43 
1-40 
1.41 
1-42 
1.38 
1.41 
1-38 
1.42 
1.41 
1.395 
1-44 
1-43 
1.425 
1.43 

1-39 
1.41 
1-41 
1.39 
1.40 
1.45 

Obs. length 
1.36 
1-42 
1.395 
1.395 

1.365 
1.42 
1.39 
1.44 
1-39 

found by the usual L.C.A.O. method. Also given are the bond lengths predicted by both 
methods (estimated from the Coulson bond-order-bond-length curve) and a comparison of 
these values with known experimental bond lengths. 
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DISC WSSION 

Although the resonance energies, calculated by each of the two methods show con- 
siderable discrepancies, yet if one set of values is plotted against the other it is seen that 
A = 1-35B - 0.70, where A and B are the resonance energies determined by the L.C.A.O. 
method and the perturbation method respectively. For the acene series of hydrocarbons 
the resonance energies are consistently lower than for the corresponding " branched " 
isomers and in these cases the relation A = 1.28B - 0.56 is better. The values given by 
these equations for the resonance energies are shown in Table 3 : the very small percentage 
errors indicate that the simple perturbation method allows an accurate estimate of the 
L.C.A.O. resonance energies of alternant polycyclic hydrocarbons. 

TABLE 3. L.C.A .O. resonance energies Predicted by the perturbation method, compared 
with the accurate values. 

Pre- 

Naphthalene ............... 3.71 
Anthracene ............... 5.35 
Phenanthrene ............ 5.54 
Naphthacene ............ 6-92 
3 : 4-Benzophenanthrene 7.18 
Triphenylene ............ 7.27 
Chrysene .................. 7.18 
1 : 2-Benzanthracene ... 7-18 

Compound dicted Found 
3.68 
5-31 
5.45 
6.93 
7-19 
7.28 
7-19 
7.10 

Error 

0.8 
0.7 
1.7 
0.2 
0.1 
0.1 
0.1 
1.4 

(%) 
Pre- 

Pentacene ..................... 8-49 
1 : 2-3 : 4-Dibenzanthracene 8.91 
1 : 2-7 : 8-Dibenzanthracene 8-84 
Picene ........................... 8.84 
Pentaphene ..................... 8.84 
1 : 2-5 : 6-Dibenzanthracene 8-84 
Azulene ........................ 3.21 
Pentalene ........................ 2.20 

Compound dicted Found 
8.54 
8-94 
8-88 
8.94 
8.76 
8-88 
3.36 
2.46 

Error 

0-6 
0.3 
0.4 
1.1 
0.9 
0.4 
4.4 

(%I  
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The correspondence of the values of orbital and transition energies given by the two 
methods is also sufficiently close to allow the simple method to have useful applications. 

Discrepancies between the two methods are shown in the bond orders and the corre- 
sponding estimated bond length. The bond length D of naphthalene calculated by the 
perturbation method is in slightly the better agreement with experiment. For anthracene 
the perturbation method gives a better predicted value for bond A but worse values for 
B and D. The discrepancy for bond D may however not be as great as indicated, for there 
is some evidence that the experimental value is less than that given in Table 2 ( b e d  
and Cruickshank, Acta Cryst., 1952, 5, 852). In the alternant hydrocarbons both methods 
commonly predict the bond possessing greatest chemical reactivity. It is interesting also 
that the introduction of a cross-link between atoms 1 and 5 in cyclodecapentaene has no 
effect on the bond orders; the bond orders of the external bonds in azulene are therefore 
all equal, and the same as those for cyclodecapentaene. It can be shown that this is a 
general result when a cross-link is introduced between two atoms of like parity, i.e., both 
starred or unstarred, in a cyclic polyene. Another interesting feature of the perturbation 
method is that it predicts that all the external bonds of the outer rings in phenanthrene 
have the same lengths, as do those of benzene; there are also differences predicted by the 
two methods for 1 : 2-benzanthraceneI and comparison with experimental values would 
be desirable. 

So far the only compounds that have been treated by the above perturbation procedure 
are polycyclic aromatic hydrocarbons having no carbon atom common to more than two 
rings. It is hoped t o  extend the method to the more highly condensed systems and also 
to heterocyclic molecules. 
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